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Signature :

iv



ABSTRACT

MULTI-OBJECTIVE CHARGING SCHEDULING UTILIZING ELECTRIC
VEHICLE LOAD MODELS

Güzel, İven
M.S., Department of Electrical and Electronics Engineering

Supervisor : Assoc. Prof. Dr. Murat Göl

June 2022, 80 pages

Utilization of electric vehicle (EV) load models can improve the performance of smart
charging strategies, which increase the reliability of the grid by harnessing the flexi-
bility of EV loads. This thesis presents methods for utilizing EV load models in real-
time stochastic charging control with single and finite system-time horizons. First,
the drivers’ load models are found with kernel density estimation. A single system-
time horizon coordinated charging control algorithm is devised to ensure each EV is
charged at least a critical amount given a feasible set of optimization constraints. The
coordinated charging algorithm tackles the NP-hardness of single-deadline charging
scheduling problems efficiently with a sorting algorithm utilizing the stochastic EV
load models. Moreover, the single system-time horizon coordinated charging con-
trol algorithm is extended to a scheduling algorithm considering a finite system-time
horizon. This approach utilizes the stochastic EV load models in a model predic-
tive control based approach to decrease the complexity of stochastic online charging
scheduling problem into a deterministic case. The scheduling algorithm makes as-
sumptions about the future arrivals to the charging station, unlike the classical online
EV charging scheduling algorithms, which optimize the load demand revealed at the
current time but underestimate the load demand revealed in the future. Findings of
the thesis work suggest the individual load models complement smart charging algo-
rithms’ decision process by improving the fairness of charging time allocation and
extending the degree of knowledge of future random data for the scheduling algo-
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rithm.

Keywords: Plug-in Electric Vehicles, Load Modeling, Smart Charging, Charging
Scheduling, Electric Vehicle Grid Integration.
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ÖZ

ELEKTRİKLİ ARAÇ YÜK MODELLERİNİ KULLANAN ÇOK AMAÇLI
ŞARJ PLANLAMASI

Güzel, İven
Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü

Tez Yöneticisi : Doç. Dr. Murat Göl

Haziran 2022 , 80 sayfa

Elektrikli araç (EA) yük modellerinin şarj stratejilerinde kullanılması, EA yüklerinin
esnekliğinden yararlanmaya olanak sağladığı için şebekenin güvenilirliğini sağlamak
amacıyla geliştirilen akıllı şarj stratejilerinin performansını artırmaktadır. Bu tez, tek
veya sonlu sistem zamanına sahip gerçek zamanlı stokastik şarj kontrolünde EA yük
modellerinden yararlanan yöntemler sunmaktadır. Önce sürücülerin yük modelleri,
çekirdek yoğunluğu tahmini yöntemi ile bulunmuştur. Tasarlanan tek sistem zamanı
ufuklu koordineli şarj kontrol algoritması ile her bir EA’nın uygun optimizasyon kı-
sıtlamaları seti verilmesi şartıyla en az kritik bir miktarda şarj edilmesini sağlamak-
tadır. Bu algoritma, stokastik EA yük modellerini kullanan bir sıralama algoritması
sayesinde tek zaman adımlı şarj çizelgeleme problemlerinin hesaplama yükü prob-
lemini verimli bir şekilde ele almaktadır. Ayrıca tek sistem zaman adımlı koordineli
şarj kontrol algoritması çözümü, sonlu zaman ufkuna sahip çizelgeleme algoritma-
sına genişletilmiştir. Bu yaklaşım, stokastik çevrimiçi şarj çizelgeleme probleminin
karmaşıklığını deterministik bir duruma indirgemek için model tahmine dayalı bir
yaklaşımda stokastik EA yük modellerini kullanmaktadır. Çizelgeleme algoritması,
mevcut zamanda ortaya çıkan yük talebini optimize eden ancak gelecekte ortaya çıkan
yük talebini dikkate almayan klasik çevrimiçi EA şarj programlama algoritmalarının
aksine, şarj istasyonuna gelecekteki varışlar hakkında varsayımlarda bulunmaktadır.
Tez çalışmasının bulgularına göre bireysel yük modelleri, şarj süresi tahsisinin adil-
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liğini geliştirerek ve çizelgeleme algoritması için gelecekteki rastgele verilerin bilgi
derecesini genişleterek akıllı şarj algoritmalarının karar sürecini iyileştirmektedir.

Anahtar Kelimeler: Şebekeye Bağlanabilen Elektrikli Araçlar, Yük Modelleme, Akıllı
Şarj, Şarj Planlama, Elektrikli Araç Şebeke Entegrasyonu.
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CHAPTER 1

INTRODUCTION

The global transition of the light vehicle fleet to electric vehicles (EVs) advanced sig-

nificantly over the last decade, underpinned by technological advances, green energy

policies, and supportive government incentives. However, uncoordinated penetration

of EVs due to the electrification of the transmission sector prompts overloadings and

low voltage violations that the existing power grid cannot manage. This thesis is

concerned with the electric vehicle charging problem and proposes charging control

methods utilizing EV load models as a smart charging solution for workplace charg-

ing stations.

To understand the relevance of this work, it is necessary to explain the emerging

changes in the power system and the political reasons behind this transformation first.

The following subsections introduce a political and technical background of the EV

charging problem.

1.1 International Agreements on Climate Change

In 2015 at the United Nations Climate Change Conference (COP 21), representatives

of the 196 attending parties of the United Nations Framework Convention on Climate

Change (UNFCCC) reached a consensus on the Paris Agreement to keep the rise in

global temperatures to well below 2◦C and limit the temperature increase to 1.5◦C

above pre-industrial levels by 2050 [1]. The Paris Agreement is considered a land-

mark in the multilateral climate change process since, for the first time, a binding

agreement brings nations into undertaking efforts to combat climate change problem.
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On Earth Day (April 22) in 2016, 174 of these countries signed the Paris Agreement

in New York and began adopting it within their legal systems.

The key aspects of the goals adopted by the Parties at the COP 21 are summarized as

follows:

• The long-term temperature goal seeks to limit the global temperature increase

to well below 2◦C while pursuing efforts to limit the increase to 1.5◦C.

• All Parties shall pursue domestic measures to achieve a nationally determined

contribution (NDC) and communicate their NDCs every five years to provide

clarity and transparency.

• According to global peaking and climate neutrality goals, Parties aim to reach

global peaking of greenhouse gas emissions (GHGs) as soon as possible to

achieve the long-term temperature goal while recognizing that peaking will take

longer for developing country Parties.

• Parties are to enhance understanding, action, and support for improving climate

resistance and adaptation capability against climate change’s adverse effects,

protecting food production from getting harmed.

• Parties of the Agreement are to stabilize the financial flow for the low GHG

and climate persistence development to the best of their capability. The Paris

Agreement reaffirms the obligations of developed country Parties to support the

efforts of developing country Parties to build clean, climate-resilient futures.

Additionally, The Green Deal declared by the European Union (EU) in December

2019 sets further targets to make Europe carbon neutral by 2050 and reduce green-

house gas emissions by 55% compared to the 1990 levels by 2030 [2].

1.1.1 Turkey’s Ratification of the Paris Agreement and Green Deal Action Plan

Although Turkey signed the Paris Agreement on April 22, 2016, the ratification of

the agreement entered into force almost five years later by the Official Gazette (num-

bered 31621) dated October 7, 2021, with the article named "The Law Regarding the
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Approval of the Paris Agreement" ("Paris Anlaşmasının Onaylanmasının Uygun Bu-

lunduğuna Dair Kanun"). The action plan released by the Turkish Republic Ministry

of Trade, the Green Deal Action Plan of Turkey (Yeşil Mutabakat Eylem Planı), sets

out the following targets:

• Harmonizing with the EU’s environmental regulations,

• Usage of a cleaner energy supply model; allocating 1 GW capacity for new

solar and wind power plants each year until 2027,

• Enabling green investment through financing; transmission of a green farming

policy; transforming into a sustainable and intelligent transportation system.

The ratification of the Paris Agreement and Green Deal Action Plan by the Turkish

Parliament signifies that Turkey will become more effective in taking steps in accor-

dance to fulfilling its obligations concerning the global climate crisis and achieving

its goals in accordance with the EU’s goal of climate-neutrality as of October 2021.

1.2 Changes in the Power System Operation

Targets of the Paris Agreement and the Green Deal Plan dictate comprehensive de-

carbonization of the energy sector [3]. Significantly greater penetrations of variable

renewable energy (VRE) resources and increased electrification of end-use sectors

such as heating, industry and transport are two key elements that prove decisive for

the decarbonization goals [4, 5].

According to International Renewable Energy Agency (IRENA), the contribution of

renewable energy sources to the global annual electricity generation needs to increase

from 25% today to 86% to meet the 2050 goals. Around 70% of this 86% is expected

to be supplied from VRE sources, accounting for 60% of the total annual electricity

generation. On the other hand, reducing fossil fuel dependency through electrifica-

tion, with the transportation and heating sectors being the most notable examples, is

expected to double the electricity consumption considering all energy applications by

2050 [5].
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With the increased VRE penetration and electrification following the Paris Agreement

goals, new concepts such as the smart grid paradigm, flexible loads, and distributed

energy resources (DERs) have been introduced into the power system. The follow-

ing subsection gives an overview of the traditional power system and the expected

changes to form the modern power system, which expands the flexibility for a safer

adaptation of DERs.

1.2.1 The Traditional vs. Modern Power System

The traditional power system was designed to follow the demand by generating elec-

tricity at bulk generating units to be more economical. Electricity is delivered to the

consumers in a top-down approach through the transmission and the distribution grid

over long distances, as depicted in Figure 1.1.

Figure 1.1: The traditional power system. Source: [6].

With the conventional power system technology, it is not possible to store energy in

large orders; therefore, flexibility has been typically harnessed on the generation side.

Consumers’ energy demands for the next day are forecasted, and generator units are

scheduled accordingly by the Transmission System Operator (TSO). In this paradigm,
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the electricity supply must match the demand at all times. The TSO resolves the im-

balance (if any) between the generation and consumption to secure the grid’s stability

through the ancillary service markets.

Conventionally, ancillary services are provided by hydropower or fossil-fuel-powered

units that provide energy from a portion of their capacity but have additional unused

capacity. It is important to note here that the majority of the fossil-fuel-powered plants

need to be replaced with renewable energy resources to meet the decarbonization

goals of the Paris Agreement. Therefore, new sources for ancillary services in favor

of the agreement must be found.

In the modern grid structure, new elements, commonly referred to as DERs or flex-

ible resources, are introduced at the distribution level. Consequently, it is primarily

the distribution system operator’s (DSO) responsibility to resolve the problems aris-

ing due to the integration of these technologies. Examples of the DER technologies

include EVs and heat pumps as consumers and wind turbines, small-size generators,

and photovoltaic (PV) units as producers.

The modern smart grid structure can be seen in Figure 1.2. The flow of electricity

is not only from large generating units to consumers through transmission and dis-

tribution systems, but there is also intermittent electricity generation by the DERs at

the distribution level. Furthermore, the smart grid structure contains an extensive in-

formation and communications technologies (ICT) infrastructure, which enables the

communication and control between the system actors.

In order to address the new challenges arising from the high penetration of VRE re-

sources and increased load demand due to electrification, consumers are expected to

become both producers and consumers of electricity, i.e., prosumers. In this context,

flexibility is harnessed not only on the supply side but also on the demand side, an

approach referred to as demand-side flexibility. The consumers become active par-

ticipants in the grid operation by providing ancillary services to the system operators

through aggregators.
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Figure 1.2: The smart grid power system. Source: [6].

An aggregator is a market participant that manages a pool of consumers, producers,

prosumers,or any mix thereof as a virtual power plant (VPP) to act as a single entity

when engaging in wholesale and retail markets or selling services to the system op-

erator [7, 8]. Aggregators deliver essential benefits to the smart grid operation [6, 8],

including

• Providing asset management service to the end customers from industrial, com-

mercial, and residential sectors to have a reliable and cheap service,

• Providing local flexibility, load shifting, and ancillary services to the system

operators by acting as VPPs,

• Facilitating ICT and control infrastructure for DER owners for these services,

• Securing some certainty of service delivery and taking legal responsibility to-

wards the system operators.

Aggregators are essential agents to increase the system’s flexibility as they serve as

an intermediary that exempts the higher-level control agents (TSO/DSO) from direct
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interaction with the massive number of DERs, which is impractical. The next chapter

briefly discusses the flexibility enablers of the smart grid paradigm and demand-side

flexibility technology mapping of end-use sectors.

1.2.2 Power System Flexibility for the Energy Transition

The growth of the power demand due to electrification creates challenges in covering

the peak demand and increasing ramping requirements and aligning the supply and

demand, given a variable generation mix. Also, the variability and uncertainty intro-

duced on the supply side by the high penetration of VRE require sources of flexibility

through demand-side management and supply-side solutions [9]. These challenges

call for flexibility to be increased and harnessed through a portfolio of technologies

across all parts of the system [10], which could be grouped under five key technical

groups:

1. Supply-side flexibility, e.g., flexible power plants,

2. Demand-side flexibility, e.g., demand response, sector coupling.

3. Storage systems, e.g., hydrogen storage units, batteries,

4. Grid infrastructure, e.g., transmission expansion,

5. Improved operation, e.g., hydro-thermal co-optimization methods, market and

control designs with new agents such as aggregators.

Figure 1.3 lists the power system flexibility enablers associated with these techni-

cal groups. Among these enablers, sector coupling is considered both supply and

demand-side flexibility enabler as it takes place only if the electrified resources (elec-

trification of heat or transport, e.g., power-to-heat, power-to-gas, and smart charging

of electric vehicles) are used in a way that favours VRE integration.
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Figure 1.3: Power system flexibility enablers in the energy sector.

Sector coupling resources can be combined with smart appliances in residential, com-

mercial, and industrial applications. The compatibility and suitability of the sector

coupling solutions vary depending on the end-use sectors analyzed, namely indus-

trial, commercial, or residential. For example, the potential for gaining flexibility

from hydrogen production is more significant for the industrial sector, whereas direct

electrification with VRE sources is a cheaper alternative for residential and com-

mercial buildings. Table 1.1 maps the compatibility and suitability of demand-side

technologies to the end-use sectors [3].

Sectors Industrial Commercial Residential
Electric vehicles
Power-to-heat
Power-to-hydrogen
Smart appliances
Industrial processes

Flexibility solution would be competitive/suitable in that end-use sector,

Flexibility solution is unlikely to be competitive/suitable in that end-use sector

Table 1.1: Demand-side flexibility technology mapping of end-use sectors
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1.3 Electrification of the Transportation Sector

Electric vehicles are defined as vehicles whose driving torque is produced by motors.

EVs can use electric motors or traction motors for propulsion and can be powered by

electricity from an off-vehicle source or self-contained by a generator that converts

fuel to electricity [11].

According to the 2021 issue of Global EV Outlook, which is annually published by

the International Energy Agency (IEA) that identifies and discusses recent develop-

ments in electric mobility across the globe, the transportation sector has the highest

reliance on fossil fuels of any sector as it accounts for 37% of CO2 emissions from

end-use sectors [12]. Initiatives countries have taken following the Green Action

Plan encourage shifts to the less carbon-intensive travel options and energy efficiency

measures to reduce the carbon intensity of transport modes. Accordingly, the electrifi-

cation of the transportation sector will accelerate the wide-scale adoption of EVs [13].

In 2021, electric car sales more than doubled to reach 6.7 million, representing close

to 9% of global car sales. The number of electric cars on the world’s roads had

reached 16 million at the end of 2021, whereas there were only about 17,000 EVs in

2010 as depicted in Figure 1.4.

Figure 1.4: Global electric vehicle stocks announced by the IEA (2010-2020).

Regarding the electrification of the vehicles, there are several types of EVs in the mar-

ket that are alternatives to internal combustion engine (ICE) vehicles [14]. Figure 1.5

illustrates the propulsion systems of the most relevant vehicle architectures. Battery

9



(a) Internal combustion engine vehicle.

(b) Series hybrid electric vehicle.

(c) Parallel hybrid electric vehicle.

Figure 1.5: Propulsion systems of most relevant vehicle architectures.
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(d) Plug-in hybrid electric vehicle.

(e) Battery electric vehicle.

(f) Fuel cell vehicle.

Figure 1.5: Propulsion systems of most relevant vehicle architectures (cont’d).
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electric vehicles (BEVs), hybrid electric vehicles (HEVs), plug-in hybrid electric ve-

hicles (PHEVs), and fuel cell electric vehicles (FCEV) are the main types of EVs [15].

Batteries of HEVs cannot be plugged into the grid to charge the battery. Instead, the

battery is charged through regenerative braking and the ICE. Figures 1.5b and 1.5c

show the propulsion systems of series and parallel HEVs, but the series-parallel hy-

brid vehicle and the complex hybrid vehicle architectures also exist [15]. PHEVs (Fig-

ure 1.5d) can be plugged into the grid and charged fully. Also, PHEV batteries can

be charged by regenerative braking, which extends the driving range. A BEV (Fig-

ure 1.5e is a type of EV that exclusively uses chemical energy stored in its recharge-

able battery packs, with no secondary source of propulsion, e.g., hydrogen fuel cell

or internal combustion engine. FCEVs (Figure 1.5f) are fueled with hydrogen gas

stored in a tank on the car, where energy stored as hydrogen is converted to electricity

by the fuel cell. FCEVs can fuel in minutes and have a driving range over 450 km.

However, the market for them is quite limited due to the limited and expensive hy-

drogen infrastructure [11], which makes plug-in electric vehicles (BEVs and PHEVs)

the number one candidate for the electrification of the transportation sector.

In this thesis, plug-in electric vehicles are referred shortly as EVs.

1.3.1 Electric Vehicle Charging Problem

Electric vehicles are high-power consumers in the presence of uncoordinated pen-

etration that the grid should supply. For example, the power consumption of the

BMW i3 (BMW i3s 120 Ah, Model 2022) is 14.7 kWh per 100 km, whereas the

average daily electricity purchased by residential customers in the United States is

approximately 10.7 kWh [16]. The widespread adoption of EVs prompts higher peak

load demands and ramping requirements that the existing power grid cannot man-

age [17]. The local distribution grid is affected negatively by uncontrolled EV charg-

ing in terms of its voltage profile, power loss, grid unbalance, reduction of transformer

life, and harmonic distortion. Thus, ubiquitous research studies address these prob-

lems by proposing various smart charging methods by investigating the EV charging

problem from different aspects.
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Advances in EV charging system design, hardware, monitoring, and control, which

are collectively referred as smart charging strategies, are utilized for a safer adoption

of EV loads. Such strategies demand-side flexibility by optimizing the charging pro-

cess according to grid constraints, local availability of VRE resources and customers’

preferences.

1.4 Smart Charging

Smart charging is crucial for large-scale charging facilities, especially those with

weak grid connections. Smart charging can minimize the grid congestion (by shifting

charging times from the morning and evening peaks) and the charging cost by follow-

ing VRE availability and avoiding charging when prices are very high due to scarcity

events in the grid. In addition, V2G technology enables selling energy back to the

grid when it is most needed or expensive [3].

According to the existing literature on smart charging control algorithms, EV charg-

ing solutions can be grouped with respect to EV charging methods, charging direction

and control levels, charging environment, and charging control architectures. Fig-

ure 1.6 summarizes the classes of EV charging solutions.

Figure 1.6: Classification of EV charging solutions.

The first classification of EV charging solutions investigates the EV charging problem

from a technical level, i.e., the physics of the charging process, charging protocols,

and the safety, communication, and generic standards. Battery exchange, conductive

charging, and wireless charging are the three main charging techniques, of which the

latter two are for PHEVs [18]. This thesis, and an overwhelming majority of the
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EV charging control literature, deals with the conductive charging methods. Several

charging techniques exist for conductive charging. In this context, organizations such

as IEC, SAE, IEEE, and CHAdeMO have established many AC and DC charging

mode standards [14], as explained in detail in Chapter 2.

Secondly, charging solutions can be classified as uncoordinated charging, where EVs

are charged at maximum power when they are plugged into the grid, and smart charg-

ing [19]. The smart charging strategies can be further divided into unidirectional (also

called V1G) and bidirectional charging (vehicle-to-home (V2H) and vehicle-to-grid

(V2G)).

Another classification is based on the location of EVSEs as the benefits and control

challenges of residential, commercial, and fleet charging applications vary substan-

tially. For instance, residential EV loads have the most flexibility [20] in charging

time. Fleets of vehicles owned by a single organization, such as school buses, taxis,

and post cars, have more advantages in V2G as they can be aggregated easily [11].

Commercial AC charging stations have resource allocation problems [21, 22], and

DC fast-charging stations have higher grid impacts [23]. Thus, charging solutions are

designed to maximize the profit while minimizing the grid impact, considering the

peculiar benefits and setbacks to these environments.

Finally, EV charging solutions can be classified according to their control schemes,

i.e., based on whether decisions on a group of EVs are made by a single entity (cen-

tralized control), by individual EVs (decentralized control), or in a tree structure of

aggregators (hierarchical control) [24].

1.4.1 Smart Charging System Entities

Smart charging applications requires coordination and communication between charg-

ing system entities, i.e., EV, EVSE, and third-party operators, which are one or a

combination of e-mobility and energy entities listed below [25]. The ecosystem en-

tities exchange information and control signals through communication protocols to

manage the time and speed of charging (See Chapter 2.2.). Front-end protocols link

EV with EVSE, while the-back end protocols link EVSE with CPO and third-party
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operators with each other.

the communication protocols between the EV and the charger

Charge point: Charging location containing one or more EVSEs.

Energy Management System (EMS): Smart energy management system that

monitors and optimize energy consumption and generation of a small local sys-

tem such as smart homes and smart buildings.

Electric Mobility Service Provider (eMSP): The entity holding a contract

with EV owners for services related to charging.

Charge Point Operator (CPO): The central system entity which operates and

manages charge points.

Energy Supplier: The entity selling electricity to consumers.

Balance Responsible Party: An entity which is financially responsible for the

real-time balance of supply and demand.

TSO/DSO: Transmission/Distribution system operator.

Aggregator: An entity responsible for aggregating DERs to provide power

system services to third-party entities (See Section 1.2.1.).

Smart chargers connect EVs to the grid facilitating the additional hardware and soft-

ware for exchanging information and control signals in order to manage the time and

speed of charging (i.e., power rate). Additionally, a smart charger with V2G capabil-

ity can switch the direction of charging by allowing EVs to sell energy back to the

grid. Both charging technologies ensure EVs are charged to meet the EV owners’

requirements, usually set by the EV owner through a mobile application [20].

Smart charging stations are advantageous at locations providing the latent flexibility

of charging allows managing the charging time and rate without violating the EV

users’ charging requirements; see Table 1.2. Residential and workplace charging

locations where EVs are routinely parked for an extended period provide the neces-

sary flexibility for smart charging. DC fast charging, which supplies around 80% of
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Table 1.2: Characteristics of typical light-duty EV charger locations.

Locations

Residential Work Commercial

Garages,

street parking
Parking lots

Malls,

filling stations

DC FC

Stations

Parking duration Overnight Work hours 2-4 hours Minutes

Charging

Rate

< 22 kW

50-150 kW

> 150 kW

Smart charging

V2G

Applicable Applicable with limitations Not applicable

recharge in 30 min for a 135-160 km range, is unsuitable for load shifting or V2G;

however, it requires some communication with the grid and control for charging effi-

ciency and minimizing the grid impact.

1.5 Thesis Outline and Contributions

This thesis deals with the electric vehicle charging problem, in particular, AC charg-

ing control, and proposes a coordinated charging algorithm and a multi-objective

charging scheduling method utilizing EV load models as a smart charging solution

for private workplace parking lots. The rest of the chapters with the corresponding

contributions are summarized as follows:

Chapter 2 provides a cyber-physical overview of the smart charging ecosystem, al-

leviating confusion among commonly used EV charging standards and protocols by

stating where these terms are applicable. It explains common EV charging terms,

charging modes/levels, and applied codes and standards for conductive charging sys-

tems, followed by the front-end and back-end communication protocols enabling

smart charging.

Chapter 3 presents a method based on Kernel Density Estimation to develop the in-

dividual load models of EV users while keeping the identity of the drivers for co-
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ordinated charging strategies. This chapter considers the necessity of modeling the

EV drivers separately for coordinated charging by investigating the random variables

describing the individual EV drivers. A coordinated charging control algorithm with

a single system-time horizon is devised to ensure each EV is charged at least a criti-

cal amount given a feasible set of optimization constraints. The coordinated charging

algorithm tackles the NP-hardness of charging scheduling algorithms by sorting the

values assigned to EVs using the stochastic load models.

Chapter 4 studies EV charging scheduling problem for workplace charging stations.

The single system-time horizon coordinated charging control algorithm is extended to

a multi-objective scheduling algorithm considering a finite system-time horizon. The

proposed online charging scheduling algorithm makes assumptions about the future

arrivals to the charging station. Therefore, unlike the classical online EV charging

scheduling algorithms, which optimize the load demand revealed at the current time

but underestimate the load demand revealed in the future. EV load models are uti-

lized in a model predictive control based approach to decrease the complexity of the

stochastic online charging problem into a deterministic case.

Finally, Chapter 5 summarizes the results and concludes the thesis with a discussion

of the findings, limitations of this work, and future work in this research domain.
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CHAPTER 2

INTEGRATION OF ELECTRIC VEHICLES TO THE SMART

GRID

This chapter explains common EV charging terms, charging modes/levels, and ap-

plied codes and standards to charging systems. First, an overview of EV charging

methods and the standards applied to conductive charging systems are explained.

Then, the smart charging ecosystem and the status quo on communication protocols

that link the entities of this system to secure the charging infrastructures are given.

Several charging solutions exist for conductive charging (See Section 2.1). In this

context, organizations such as IEC, SAE, IEEE, and CHAdeMO have established

many standards for AC and DC charging modes. However, codes, standards, and pro-

tocols related to EV charging are often and sometimes incorrectly used interchange-

ably. Correct use of these terms should conform to their generic definitions:

Codes: Codes are recommended sets of rules that are not the law but can be

adopted into law.

Standards: Standards are guidelines on meeting some codes used by product

designers, manufacturers, installers, and operators. Policymakers select, adopt,

and enforce codes and standards.

Protocols: A protocol defines the set of rules used by two or more parties to

interact between themselves for communication and data exchange. Commu-

nication protocols can also be standardized.

It should be noted that codes, standards and protocols in the e-mobility field are prone
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to frequent modifications; therefore, the latest version of the standards mentioned here

should be referred to before smart charging implementations.

2.1 EV Charging Infrastructures

Figure 2.1 summarizes EV charging techniques for BEVs and PHEVs, where battery

exchange, conductive charging, and wireless charging are the three main charging

techniques [18]. In this thesis, when EV charging methods are mentioned, conductive

charging methods are actually meant.

On-board charging (OBC) solutions are supplied by the AC grid through an on-board

battery charger device where energy conversion is carried out. As a result, the charg-

ing rate depends on the current capability of the AC plug, cable, and the ratings of

the on-board battery charger device. On the other hand, in DC charging solutions, the

charging stations are supplied by the AC grid as well. However, the charging rate is

significantly higher since there are almost no limitations in size and weight compared

to OBC, thanks to the off-board nature of the installation. These chargers are used in

DC fast charging stations (FCS).

Due to the contrast in their charging rate capabilities, waiting times to get the vehi-

cle fully charged differ considerably between on-board and off-board chargers. Thus,

charging power levels are generally classified into two groups: slow and fast charg-

ing [23]. Slow charging signifies the distributed charging with residential chargers

Figure 2.1: Types of EV charging solutions.
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and AC public chargers with a power rate lower than maximum household power

(e.g., 22 kW in Europe and 19.2 kW in the USA [26]).

2.1.1 International Standards Defining Charging Modes/Levels and EVSE

The charging modes/levels encountered in Europe and the USA are included in IEC

61851 (international standards for electric vehicle conductive charging systems) and

IEC 62196 (international standards for charging couplers), and SAE J1772 (General,

physical, electrical, communication, and performance requirements for conductive

charging systems) [14]. These standards are maintained by the International Elec-

trotechnical Commission (ICE) and the Society of Automotive Engineers (SAE) In-

ternational and updated with the increasing charging powers as the EV charging tech-

nology progress.

IEC 61851 establishes the international standards for the general characteristics, charg-

ing modes, connection configurations, and requirements (including safety require-

ments) for specific implementations of EVs and EVSEs. IEC 61851 standards cur-

rently consist of 6 separate documents:

1. Part 1: General requirements,

2. Part 21-1: EV on-board charger electromagnetic compatibility (EMC) require-

ments for conductive connection to AC/DC supply,

3. Part 21-2: EV requirements for conductive connection to an AC/DC supply,

EMC requirements for off board EV charging systems,

4. Part 23: DC EV charging station (DC EVSE),

5. Part 24: Digital communication between a DC EV charging station and an EV

for control of DC charging,

6. Part 25: DC EVSE where protection relies on electrical separation.

Part 1 of the IEC 61851 Standards defines four modes of charging, which are sum-

marized in Table 2.1.

21



Table 2.1: EV charging modes based on IEC 61851-1 (General requirements)

Mode Voltage Current Notes

1
1ph,250V
3ph,480V

16A

Standard socket outlet - domestic installation: AC
portable charger, no communication requirements.
Direct connection of vehicle to conventional electri-
cal outlets. Not safe.

2
1ph,250V
3ph,480V

32A

Standard socket outlet with AC EVSE - domestic:
AC portable charger with communication and safety
requirements. EVSE provides earth detection and
monitoring; over-current and ground fault protection,
heating protection; functional switching depending
on vehicle presence and charging power demand. Re-
quires control box between vehicle and electrical out-
let. Not safe for public charging.

3
1ph,250V
3ph,480V

32A

AC EVSE permanently connected to an AC sup-
ply network: AC stationary charger with communi-
cation and safety requirements. The communication
wire between EV electronics and EVSE allows for
integration into smart grids. EVSE is permanently
connected to grid. Typical public charger installa-
tion.

4 400V 200A

DC EVSE: Fast charging using charger technologies
such as CHAdeMO. DC stationary charger with com-
munication and safety requirements. Current conver-
sion handled by EVSE, not EV.

SAE J1772, formally titled "SAE Surface Vehicle Recommended Practice J1772, SAE

Electric Vehicle Conductive Charge Coupler", defines the North American standards

for general, physical, electrical, communication, and performance requirements for

EV conductive charge system and operational, functional, and dimensional require-

ments for the vehicle inlet and mating connector. Table 2.2 compares the standard

charging levels based on the SAE J1772.

Among the charging levels in the table, DC levels are typically used for commercial

FCSs and capable of providing a wide range of input and output voltages. AC Level

1 requires 120 V which is typical in residential and commercial buildings. However,

the power rate of AC Level 1 is insufficient for fully charging EV batteries that are

fully discharged or that have high capacity, making AC Level 1 charging only suitable
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Table 2.2: EV charging levels based on SAE J1772 standards

Charging
Level

Input
Voltage

Output
Voltage

Maximum
Current

Maximum
Power

AC 1 120V 120V 16A 1.9kW
AC 2 208-240V 208-240V 80A 19.2kW
DC 1 208-600V 50-1,000V 80A 80kW
DC 2 208-600V 50-1,000V 400A 400kW

for overnight charging in residential charging locations. AC Level 2 requires 240 V

for residential buildings and 208 V for commercial buildings, which makes it suit-

able for smart charging strategies and non-smart charging strategies for non-domestic

applications [27]. Although a third AC charging level for three phase charging was

considered by the SAE, it was never implemented for light duty vehicles.

The motivation of SAE J1772 is to determine a common electric vehicle conductive

charging system architecture in the USA by gathering the international standards for

EVSE, EV, and communication between EV and EVSE under a single title. To this

end, SAE J1772 references:

• IEC 61851,for the general requirements of charging EVs at standard AC supply

voltages and DC voltages, including low-level EVSE-EV communication,

• IEC 62196, for the general requirements of AC and DC charging plugs, sockets,

outlets, inlets, connectors, and cable assemblies for EVs,

• ISO/IEC 15118, for the general requirements on high level communications

enabling smart charging.

2.1.2 International Standards on EV Coupler Configurations

IEC 62196, Plugs, socket-outlets, vehicle connectors and vehicle inlets – Conductive

charging of electric vehicles, defines the international standards of electrical connec-

tor sets for AC and DC charging. IEC 62196 (Part 1: General requirements) provides

a broad characterization of the interface between EV and EVSE, including the me-

chanical and electrical requirements and tests for charging equipment.
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Specific designs for AC charging in the modes 1, 2, and 3 as defined by IEC 61851-1

are explained by IEC 62196-2 (Part 2: Dimensional compatibility and interchange-

ability requirements for AC pin and contact-tube accessories), which extends IEC

62196-1. The specific designs are grouped into three types: Type 1 (Figure 2.2a,

2.2b), Type 2 (Figure 2.2c, 2.2d), and Type 3 (deprecated). These configurations

consist of vehicle couplers (vehicle connectors and vehicle inlets).

• Type 1 connectors (Figure 2.2a), colloquially known as the Yazaki connectors

or SAE J1772 connectors, are predominantly used in the US. This type only

supports single-phase charging with an operating current of up to 32 A. How-

ever, it allows a maximum current of 80 A in the USA, where SAE J1772 also

describes this higher operating current.

• Type 2 connectors (Figure 2.2c), also known as the Mennekes connectors, are

used in all public AC charging stations within the EU as required by regulation.

This type supports three-phase charging allowing operating currents up to 63 A

and a maximum current of 70 A for single-phase applications.

In addition to the AC conductors, these connectors have a protective conductor (Pro-

tective Earth) and two signal pins that are used for the control pilot and proximity plot

utilized in signaling functions enabling the EV and EVSE handshake protocol, which

is explained further in Section 2.2.1.1.

IEC 62196-3 (Part 3: Dimensional compatibility and interchangeability requirements

for DC and AC/DC pin and contact-tube vehicle couplers) references IEC 62196-1 to

describe specific configurations of EV couplers intended to be used for DC charging

in Mode 4 as clarified by IEC 61851-1. The specific configurations, namely, Con-

figurations AA, BB, EE, and FF, allow compatibility between products of different

manufacturers:

• Configuration AA: Colloquially known as the CHAdeMO connector (Fig-

ure 2.3), intended to be used with DC charging stations that implement System

A1 and CAN-communication.
1 Described by IEC 61851-23.
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(a) Type 1 connector (SAE J1772). (b) Type 1 EV inlet (SAE J1772).

(c) Type 2 connector. (d) Type 2 EV inlet.

(e) Combo 1 connector

(SAE J1772, Configuration EE).

(f) Combo 1 EV inlet

(SAE J1772, Configuration EE).

(g) Combo 2 connector (Configuration FF). (h) Combo 2 EV inlet (Configuration FF).

Figure 2.2: Predominant EV coupler configurations in the USA and EU2.

2Male and female pins are not specified in the images. Pin-outs are L: AC power, N: neutral, PE: Protective

earth, CP: Control pilot, PP: Proximity plot, DC+ and DC+/DC-: DC power
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• Configuration BB: Intended to be used with DC charging stations that imple-

ment System B1 and CAN-communication. It is mostly used in China with

GB/T connectors (Figure 2.3b).

• Configuration CC and DD: Reserved for later use.

• Configuration EE: Extends the Type 1 coupler. Also known as Combined

Charging System (CCS) 1 connector” or Combo 1 connector. This configura-

tion is intended to be used with DC stations that implement System C1 and PLC

communication3.

• Configuration FF: Extends the Type 2 coupler. Also known as CCS 2 con-

nector” or Combo 2 connector and is intended to be used with DC stations that

implement System C1 and PLC communication3. It is used in all DC charging

stations within the EU as required by regulation.

(a) CHAdeMO connector (Configuration AA). (b) GB/T connector (Configuration BB).

(c) ChaoJi connector

Figure 2.3: Predominant DC couplers in China and Japan 4.

3 According to IEC 61851-24 and ISO 15118-3.
4Male and female pins are not specified in the images. Pin-outs are FG: Ground, SS1 / SS2: Charge sequence

signal, N/C: not connected, DCP: Charging enable, DC+/DC-: DC power, PP: Proximity plot, C-H/C-L: CAN

bus, PE: Protective earth, CC1/2: Connection confirmation, S+/-: CAN bus.
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2.2 Communication Protocols Linking Smart Charging System Entities

This section presents the status quo on communication protocols and standards for

the integration of EVs into the smart charging infrastructures. For proper adoption of

EVs into the electricity grid, informational and control objects are exchanged across

the ecosystem entities. Data such as EV identification, SoC, battery size, and charging

demand would flow up from EV to third-party entities. Based on the EV requests and

the system state (e.g., frequency, current, voltage, and pricing data), EVSE set points

are determined and sent down to control the charging process [20].

Communication standards linking the system entities focus on two key considera-

tions pertaining to EV charging: charging interoperability [28] and the cybersecurity

of smart charging systems [29]. Interoperability refers to the ability of a range of

EVs, EVSEs, and charging networks to interact with each other through all levels of

charging control [30]:

• EV to EVSE communication: EVs should be able to interact with differ-

ent chargers, which requires the compatibility of plugs and connectors. These

communication protocols include the front-end protocols communicating a safe

connection ‘handshake’ between EV and EVSE, ISO 15118 (International stan-

dards of vehicle to grid communication interface).

• EVSE to charging network communication: These back-end protocols en-

ables different EVSE models to interact with each other and with other charging

management systems so that the third party operators better manage EVSEs and

services like station locator websites or mobile applications are enabled.

• Charging network to charging network communication: These protocols

allow CPOs and other third party operators to communicate with each other

so that services like network roaming (members of one network charging on

another network) and aggregator functions are possible.
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2.2.1 Front-end protocols

Front-end protocols includes the communication protocols between the EV and the

EVSE. EV chargers are equipped with different communication and control capabil-

ities to foster smart charging, as expressed in Table 2.3 [11].

Table 2.3: EV supply equipment communication and control levels

Levels Communication and Control Capabilities
1 EVSE charges EV directly when it is plugged in. Only primitive com-

munications for safety precautions such as Proximity detection, Ground
fault indicator, EV and EVSE “handshake” are available.

2 All the features of Level 1. Additionally, charging time can be delayed
by EV owners by controlling the start/end times of charging.

3 All the features of Level 2. Additionally, EVSE has two-way communi-
cations with the electric utility. EVSE can receive an on/off enabling sig-
nal from the electric utility, charging rate of the EVSE can be adjusted.
Reports vehicle identification to the electric utility when the vehicle is
plugged in if Plug&Charge is enabled.

4 All the features of Level 3. Additionally, bidirectional power flow (V2G)
is enabled.

2.2.1.1 SAE J1772 Signaling Protocol

This signaling protocol enables the EV and EVSE handshake, and is defined by SAE

J1772 the signal pins and their functions in Type 1 connectors, and subsequently

included in IEC 61851. In addition to the AC and DC conductors, EV connector

configurations in Europe and the USA have a protective conductor and two signal pins

that are used for the control pilot (CP) and proximity plot (PP) functions (Figure 2.2).

PP function allows the EV to detect when it is plugged in and prevent movement while

connected to EVSE.It is also used to indicate the maximum current capability of the

cable assembly to the EVSE. The EVSE interrupts the supply current if the current

capability of the cable is exceeded. CP is a communication line allowing the EVSE to

detect the presence of the EV, communicate the maximum allowable charging current

with pulse width modulation (PWM), and control charging begin/end. This pilot

signal sets an upper limit on the rate at which the vehicle will charge. The vehicle can
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charge at any rate up to this limit.

The signaling protocol is designed so that the EVSE awaits powering the charge plug

until plugged into and commanded by the EV [31]:

1. The EVSE signals the presence of AC input power.

2. The EV detects the charging plug via a proximity circuit (thus, the EV can

prevent driving away while connected) and detect when the latch (a type of

mechanical fastener) is pressed in anticipation of plug removal.

3. Control Pilot (CP) functions begin:

• The EVSE detects the EV,

• The EVSE indicates the EV its readiness to supply energy,

• EV ventilation requirements are determined,

• The EVSE’s current capacity is provided to the EV.

4. The EV commands the energy flow.

5. The EV and EVSE continuously monitor the continuity of safety ground.

6. Charging continues as determined by the EV.

7. Charging may be interrupted by disconnecting the plug from the vehicle.

The EV and EVSE handshake communicates a safe connection ’handshake’ between

EV and EVSE and fosters only Level 1 communication and control capabilities by

itself. Level 2 capabilities are achieved when the CP is manipulated by the EV’s

side to initiate charging. Level 3 smart charging capabilities are accomplished by

controlling the plot signal by incorporating additional modules to the charger with

the following steps [32]:

1. The CP’s PWM signal is measured to determine the maximum power EVSE

can deliver in uncontrolled charging.

2. An identical CP signal is created to command the EV to reduce its maximum

charging power.
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3. The battery management system of the EV adjusts its charging rate in response

to the manipulated CP signal.

It should be noted that the actual charging rate of the EV might be below the CP

signal. Since this signaling protocol defined by SAE J1772 does not provide a mech-

anism for getting information such as state-of-charge (SoC) from the EV, it can be dif-

ficult to diagnose why the EV is charging below its allocated pilot signal. Secondly,

most commercially available EVSEs only support a discrete set of pilot signals, and

EVSEs impose limits on the pilot signals they support. The SAE J1772 handshake

protocol does not allow pilot signals below 6 A but 0 A, i.e., not charging [33].

2.2.1.2 IEC-ISO 15118: Vehicle to Grid Communication Interface

ISO 15118 defines the international standards on V2G communication interface for

bi-directional charging and discharging of EVs. It allows wireless charging and con-

ductive AC and DC charging as a part of the CCSs. ISO 15118 deploys the Plug &

Charge feature, which unlocks the following:

• With the utilization of Public Key Infrastructures (PKIs) and Certificate Au-

thorizations (CAs), automated authentication, authorisation and billing of the

charging event can start as soon as the driver connect the EV to the EVSE with-

out the need for additional authentication methods, such as smart phone apps,

RFID cards.

• An enhanced data security features comes with the cryptographic mechanisms

defined by the standard.

• EV and charging station can exchange messages using either a charging cable5

or a Wi-Fi connection6 as a physical medium.

5 Power Line Communication via a Home Plug Green PHY modem as described in ISO 15118-3
6 IEEE 802.11n as referenced by ISO 15118-8
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2.2.2 Back-end Protocols

Back-end protocols include the communication protocols between the charger and the

third-party operators in the smart charging ecosystem. The back-end communication

protocols enabling charging interoperability are as follows:

Open Charge Point Interface (OCPI): The EVRoaming Foundation manages OCPI.

It links two charge point operators together through a service provider that provides

roaming so that EV owners can use Company A’s app to pay for charging done on

Company B’s charging station [30]. The protocol facilitates automated roaming for

EV owners across several EV charging networks and promotes EV adoption by mak-

ing the following benefits available:

• Underpinning the affordability and accessibility of charging infrastructures for

EV drivers by allowing drivers to charge on several networks. (Convention-

ally, EV owners had to be members of each company to use their services and

download different apps to connect the charging stations.)

• Reducing charging anxiety by providing accurate data such as location, acces-

sibility, and pricing.

• Enabling real-time billing and mobile access to charging stations.

Open Charge Point Protocol (OCPP): OCPP is a communication protocol between

charging points or EVSEs and charge point operators. This protocol handles the

exchange of charging data and trade information between EVs and the TSO/DSO. The

protocol is maintained by the Open Charge Alliance (OCA). OCPP has the following

additional functionalities [30]:

• Separates the physical aspects of the EVSE from the network back-end entities,

• Allows site host to switch networks without replacing entire EVSEs.

Open Automated Demand Response (OpenADR): OpenADR is an open secure-

two-way information exchange model for DERs, facilitating automated demand re-

sponse (DR) actions for grid balance and cost minimization. It DR actions by relying
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on a gateway device, or aggregator to translate DR orders of the utility and DER

requirements into specific device behaviours. The OpenADR protocol ensures the

dynamic balance and reliability signals are exchanged between the third-party opera-

tors in the smart charging ecosystem during DR operations. The OpenADR Alliance

fosters this communication protocol.

IEEE 2030.5: This standard is a group of communication protocols to connect and di-

rectly control home area network devices and references to IEC 61850 (International

standards on communication protocols for intelligent electronic devices at electrical

substations). It is not directly related to EV mobility since it applies to home EV

chargers. However, it allows communication between the relevant entities for smart

charging, such as aggregators, home-smart devices, EVSE, and the EV.

IEC 63110: IEC 63110 provides the international standards on the management of

EV charging/discharging infrastructure. It has both front-end and back-end commu-

nication functions since it enables interoperability in the front-end communication

between EV and EVSE and enables smart grid integration allowing all the actors in

a specific market to interact together. IEC 63110 also facilitates bi-directional charg-

ing. It is currently under development and expected to have the following parts in

separate documents:

Part 1: Basic definitions, use cases and architectures

Part 2: Technical protocol specifications and requirements

Part 3 Requirements for conformance tests

IEC 63119: IEC 63119 sets the international standards on information exchange for

electric vehicle charging roaming service. It specifies the terms and definitions, gen-

eral description of the roaming system model, classification, information exchange

and security mechanisms for roaming between e-mobility service providers, CPOs

and some other third-party operators for roaming purposes.

Interfaces linking EV with EVSE, CPO, and other third-party operators, interfaces

linking EVSE with smart energy management systems (EMS), CPO, and other third-

party operators, and interfaces between CPOs and other third-party operators are il-
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lustrated in Figure 2.4. The figure also shows where the front-end and back-end

protocols apply to the interfaces between smart charging ecosystem entities.
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Figure 2.4: Communication protocols linking smart charging ecosystem entities.
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2.3 Conclusion

This chapter explained the standards on conductive charging systems such as EV

charging modes/levels and applied standards to EVSE and EV couplers. Moreover,

the interfaces between smart charging ecosystem entities and communication pro-

tocols enabling smart charging were provided. Not all charging standards comply

with the communication protocols enabling smart charging. Smart chargers facilitate

the necessary hardware and software for exchanging information and control signals

between EV-EVSE and EVSE-operator to manage the time and speed of charging

(i.e., power rate). To unlock these features, additional hardware and software must be

included in non-smart chargers.

Security of the smart charging entities against cybersecurity attacks is out of the scope

of this chapter. However, among the front-end and back-end communications ex-

plained in this chapter, a combination of Open Charge Point Protocol 2.0 (OCPP 2.0)

and ISO 15118 with Transport Layer Security (TLS) protocol would prevent cyber-

security attacks against the charging system [20]. This combination would secure

the communication interfaces between EV-EVSE, EV-central management system,

and EVSE-central management system. More information on this topic can be found

in [20], [29], and [34].
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CHAPTER 3

ELECTRIC VEHICLE LOAD MODELING FOR CHARGING

OPTIMIZATION

This chapter presents a method to develop the individual load models of EV users

while keeping the identity of the drivers for coordinated charging strategies and pro-

vides a coordinated charging algorithm for workplace chargers. The structure of the

chapter is as follows:

Section 3.1 gives an overview of the EV load modeling and the related literature on

EV load modeling techniques. In Section 3.2, a method based on Kernel Density

Estimation is proposed to model individual EV loads. First, commonly used density

estimation approaches in machine learning are discussed to select the best represen-

tation of charging patterns. Next, the characteristics of the utilized dataset and the

proposed method based on KDE are explained. Also, the necessity of separately

modeling the EV drivers is shown by investigating the cumulative density functions

of the random variables describing individual EV loads. In Section 3.3, a coordi-

nated charging control algorithm for workplace chargers with a single system-time

horizon is devised to demonstrate how the individual load models can be utilized in

the charging optimization process. A simulations subsection that compares uncoor-

dinated, coordinated, and First Come First Serve charging approaches is presented.

The results show that individual load models complement smart charging algorithms’

decision processes by ensuring each EV is charged at least a critical amount given

a feasible set of optimization constraints. The chapter concludes with a conclusion

section on the findings.
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3.1 Electric Vehicle Load Models

Integration of EVs in power system operation is one of the primary subjects in demand

side management. Thus, multiple research studies have addressed uncontrolled EV

charging problems by proposing various EV charging control methods to minimize

the peak-valley load difference, infrastructure costs, and losses [27]. In addition, EVs

can be used to improve the efficiency and reliability of the power grid with the vehicle

to grid (V2G) option [17]. Therefore, it is of great interests for system operators

and aggregators to extract EV charging profiles from accumulated charging demands,

smart meters with non-intrusive load monitoring (NILM), or using individual driving

profiles so that;

• Unrealistic and uncertain assumptions on demand profiles can be alleviated;

• EV charging profiles can be accurately extracted to support system operations

and planning [35, 36].

Due to spatial-temporal random dynamics of EVs, particularly passenger light-duty

ones, identifying and positioning the space and time-varying impacts on drivers’

charging behaviors are challenging. Reference [37] provides a comprehensive re-

view of published data sources for EV studies focusing on deriving charging profiles

to analyze and mitigate the EVs’ impact on the power system. The data sources have

evolved from surveys and internal combustion engine vehicle to EVs and charger tri-

als over the last two decades. While the former works on charging demand models

rely on passive observations of driving patterns and charging profiles aiming to an-

alyze the impact of EV loads on the grid [38, 39, 40], recent works take charging

sessions as their primary data source [22, 41].

In [38], statistical charging load modeling of plug-in electric vehicles in electric-

ity distribution networks is studied using National Household Travel Survey dataset,

which contains the home arrival/departure times of 1 million vehicles. In [39], the

data including the driving mileage and parking behavior of 1463 EVs in China were

collected for a year. My Electric Avenue project in the UK deployed over 200 Nissan

LEAFs to observe the driving and charging habits of a geographically and socioeco-
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nomically diverse population for two years [40]. A dynamic dataset of workplace EV

charging with over 30,000 charging sessions is provided by Adaptive Charging Net-

work Data in [22]. A real-world pilot study in [41] investigates the latent flexibility

of EV charging utilizing residential charging sessions recorded over New York.

The overwhelming majority of the studies in the literature propose methods to model

the accumulation of a group of EVs’ charging demands [27]. Reference [42] proposes

the use of probability density functions (PDFs) based on normalized histograms and

Gaussian Mixture Models to represent key charging metrics of EVs. EV load demand

is represented using fuzzy logic membership functions in [43]. The authors of [44]

proposes an Agent Based Model by examining factors influencing charging behaviors

to predict the charging demand of different types of EVs under various circumstances

in order to optimize the locations of charging stations. The use of the Monte Carlo

simulations for temporal and spatial transportation behaviors is suggested in [45].

Discrete-time Markov chains are utilized to model the stochastic nature of EV charg-

ing by the authors of [46]. On the other hand, [47] and [35] adopt NILM to extract

charging profiles from individual metering appliances.

These EV load modeling studies concentrate on analyzing the impact of charging

profiles on the power system to optimize the system design. Online EV charging

scheduling strategies can benefit from these models for extracting the expected values

of future arrival rate and charging load demand of EVs; however, individual vehicle

owners’ perspectives are overlooked since accumulated loads are used.

EV load modeling researches have concentrated on the aggregator’s and system op-

erator’s perspectives. Hence, the literature focuses on the modeling of EV loads

grouped together. On the other hand, simple empirical predictions or direct user

input are commonly used in practical control of EV charging scheduling systems.

Individual load profiles are not favored in the literature for the reasons listed below:

• For residential applications, it is costly to install additional sampling devices

into existing residential EV chargers, and unrealistic to sample and communi-

cate EV charging information to system operators [35].

• GPS measurement data-sets for individual driving profiles are scarce with most
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of them covering over a restricted period, area, and drivers.

• The number of decision variables inherent to individual driving patterns is ex-

orbitant [36].

• Charging scheduling algorithms in commercial charging stations rely on direct

user input.

However, identity retained individual charging profiles can be convenient in some

applications. For example, this kind of EV load modeling can benefit corporations

that pay car allowance to employees. Corporations usually keep the arrival/depar-

ture times of the employees to track working hours, leaving only the daily charging

duration data to be stored additionally.

Commercial charging stations rely on causal information such as connection duration

and energy demand defined by customers at arrival to the station. Classic online EV

charging scheduling algorithms optimize the load demand revealed at the current time

but underestimate the load demand revealed in the future [48]. On the other hand,

individual EV load modeling provides partial knowledge of future charging demand

data. Moreover, user input data can be quite unreliable for practical EV charging

systems, as proven in [21].

3.2 EV Load Modeling with Kernel Density Estimation

3.2.1 Density Estimation Methods

The most popular density estimation techniques are statistical models such as nor-

malized histogram, mixture models such GMM, and neighbor-based approaches such

as KDE. Among these methods, histogram as a density estimator is an inferior option

compared to GMM and KDE as it can lead to representations that have qualitatively

different features based on the choice of bin size and locations [49].

The GMM is a parametric density estimator for D-dimensional data, which assumes

all the data points are generated by a convex combination of a finite number of Gaus-

sian distributions. However, it requires specifying the number of clusters and the
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locations, µk, of each cluster. KDE solves this issue in a non-parametric way by

allocating one Parzen window per data point, so µi = xi for each data point i.

The generalized KDE approach is given by (3.1). In (3.1),κh(x) is Kernel function

with bandwidth h and µk the location of cluster k. xi represents the data-point i of a

dataset that has N number of data point.

p̂X(x) =
1

N

N∑
i=1

κh(x− xi) (3.1)

The advantage of KDE over a parametric GMM model is that except for tuning the

bandwidth, no model fitting is required. The kernel function and bandwidth are the

only things that need to be specified to estimate a density [50].

3.2.2 Personalized EV Load Models

The EV’s power demand from a charging station can be simulated using three random

variables (RVs): arrival time at the charging area, time of departure from the charging

area, and the charging amount. If these RVs have correlation, joint distributions must

be utilized to explain the relationship among them. The following subsection studies

the general characteristics of the arrival and departure times of the car owners in a

given dataset. As a preventive solution, EV load models are utilized in smart charging

system design and hardware selection.

3.2.2.1 Characteristics of the Dataset

In this work, we are making use of a dataset corresponding to the employees of a

corporate tech firm. The dataset consists of the turnstile logs of a company recorded

for three months with one-minute resolution. Figure 3.1 illustrates characteristics of

each employee’s visits to the workplace. The employees in this figure are EV owners.

Hence, Employee i is referred as EV i, where i is the staff ID. Figure 3.1a displays

percentages of weekday and weekend visits of each employee over their overall visits.

Visits of the employees generally occur on weekdays; therefore, the effect of weekend

visits is omitted in load modeling.

41



(a) Percentage of weekday and weekend visits over the total number of visits.

(b) Percentage of visit durations over the total number of visits.

Figure 3.1: Characteristics of each employee’s visits to the workplace.

The employees are required to fill a working time quota resulting in similar visit du-

ration means. The firm practices flexible hours, leading to different visit duration

variances as illustrated in Figure 3.1b. This figure gives the visit duration distribution

for each EV owner. The average overall visit duration is 8 hours and 40 minutes,

while this value ranges between 7 to 9.5 hours when employees are considered sepa-

rately. The diversity in duration distributions reveals that representing all drivers with

a generalized RV is not feasible for a practical smart charging scenario. If the arrival

and departure times were correlated, marginal PDFs of these RVs would state the du-

ration time incompletely. A copula function would have to be used to create a joint

distribution function to estimate RVs. There is no correlation between the arrival and

departure times for the treated dataset due to the corporate’s working policy; there-

fore, the marginal PDFs of the arrival and departure times can sufficiently describe
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the visiting behaviors of the drivers.

3.2.3 Density Estimation of EV load parameters

The conventional PDFs are limited to model the stochastic behavior of vehicle owners

due to the complex characteristics of the EV load parameters. Density estimators

can tackle this problem by estimating the PDF of an RV. A density estimator is an

algorithm that produces an estimate of the D-dimensional PDF from a D-dimensional

dataset.

The proposed method derives the PDFs with KDE to stochastically represent the ar-

rival and departure times for each EV owner. For optimizing the bandwidth of the

kernel functions, grid search with half minute resolution within an hour is carried out

for each parameter and driver using Python Scikit-learn library [51]. In order to min-

imize the reduction in the training sets, leave-one-out cross-validation is used. For

the selection of the kernel function, the cross-validation process is done once for each

of the Gaussian and Epanechnikov kernel functions given by (3.2) and (3.3), respec-

tively. The kernel that minimizes the estimation error is used to generate the PDFs of

arrival and departure times.

κh(x, h) ∝ exp

(
−x2

2h2

)
(3.2)

κh(x, h) ∝ (1− x2

h2
) (3.3)

Figure 3.2 illustrates the results of the procedure where the arrival and departure times

of all drivers are used as the training set. In the figure, PDFs of the arrival and depar-

ture times are plotted on the associated normalized histograms.

The PDFs and cumulative density functions (CDFs) of each EV are graphed in Fig-

ure 3.3, which shows that CDFs of EV 3 and 7 start to increase and approach to 1 in

a narrow time frame, whereas other owners have greater deviations. The variety in

times of the day at which the CDFs reach the maximum value and their derivatives

show that the drivers should be modeled separately since acknowledging the variance

in the flexibility of each driver’s connection time improves the fairness of charging

time allocation.
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Figure 3.2: Distribution of arrival and departure times with associated PDFs.

Energy requirements of EVs: While determining a smart charging strategy, identi-

fying the energy requirements of the EVs is crucial. The KDE can be used to estimate

the PDFs of charging amount, provided that the data of EVs’ daily charging duration

are retained. In this work, we assume that the energy requirement of each EV is esti-

mated with proper accuracy. The energy requirement for a trip is strongly related to

the route and the traffic congestion. The spatiotemporal analysis of recurrent conges-

tions shows obvious and similar peaks in the morning and evening peak hours [52].

Thus, the mean of the energy requested from the charging network is utilized for a

simple stochastic representation, assuming each driver follows the same route in their

everyday commutes under similar traffic congestion levels.

3.3 Workplace Charging Utilizing Personalized Models

This section presents a coordinated charging algorithm that performs single dead-

line charging scheduling. The coordinated charging algorithm devised here decides

whether a EV should be charged or not when the total charging demand is above the

allowable demand.
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(a) Probability density functions (PDFs).

(b) Cumulative density functions (CDFs).

Figure 3.3: PDFs and CDFs of the arrival and departure times of each EV.
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Another solution to suppressing the charging demand could be using a First Come

First Serve (FCFS) scheduling algorithm, which waits before charging another EV

until the batteries of the currently charged ones are full. This process does not op-

timize the average waiting time, hence in most scenarios, the time a EV must spend

in the queue would be longer than its duration in the charging network. Therefore,

the necessary charging times and departure times must be compared before giving

precedence to a EV, where individual EV load models come in useful.

3.3.1 Coordinated Charging Algorithm

The presented coordinated charging algorithm assigns a charging rate to each EV

using based on a process of group assignments using stochastic energy consumption

and departure times, which is summarized in Figure 3.4.

The algorithm uses four group of parameters in the decision process:

• System inputs: Allowable charging demand

• EV inputs: SoCnow, Ebat

• User-defined inputs: SoCdes

• Stochastic inputs: tcrit, SoCcrit

The stochastic inputs are calculated using the generated EV load models. SoCcrit

is the minimum SoC necessary for the EVs when they leave the charging station

considering the daily energy demand of the vehicle with a safety margin, in (3.4).

SoCcrit = min(100, SoCsafety +
Estoc

Ebat

.100) (3.4)

tcrit is the time of the day at which FTd
(td) reaches a predefined critical value. As the

departure time must be greater than the actual time of the day, tcrit must be calculated
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Figure 3.4: Flowchart of the coordinated charging algorithm

by the conditional CDF in (3.5).

FTd|td≥tnow(td) =
P (Td ≤ td | tnow ≤ Td ≤ td)

P (td ≥ tnow)

=
FTd

(td)− FTd
(tnow)

1− FTd
(tnow)

(3.5)

If the allowable charging demand is less than actual demand, the algorithm assigns a

group and subgroup to each EV according to Table 3.1.
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Table 3.1: EV Groups Assigned by the Algorithm
Groups Group condition Sub-groups Sub-group condition

Gr. 1 SoC < SoCcrit
Gr. 1.1

Can SoC reach to SoCcrit before tcrit?
No

Gr. 1.2 Yes

Gr. 2 SoCcrit < SoC < SoCdes
Gr. 2.1

Can SoC reach to SoCdes before tcrit?
No

Gr. 2.2 Yes
Gr. 3 SoC > SoCdes No sub-groups

Group 1 is the EVs whose SoC are below SoCcrit, whereas Group 2 is the EVs whose

SoC are between SoCcrit and SoCdes. Group 1 is with the priority and dispatched

with a nonzero charging rate first, followed by Group 2. The subgroups indicate

whether the EV loads have a higher probability of leaving the station earlier. Given

equal energy demands EVs belong to the first subgroup must prioritize those in the

second.

In order to optimize the average waiting time in the queue, each EV is assigned a

value ϵ [0,vg] by the value functions in (3.6) and (3.7) for Group 1 and 2, respectively,

where vg is larger for the first subgroup. Since tanh(.) is a monotonically increasing

function for the values in its non-negative domain, fv increases with SoCnow within

the same subgroup. The EVs with the highest values are charged first in order to

select the EVs that can be transferred faster to a less prioritized group. This process

aims to maximize the number of satisfied customers.

fv = vg.(1− tanh(k.Ebat.(SoCcrit − SoCnow))) (3.6)

fv = vg.(1− tanh(k.Ebat.(SoCdes − SoCnow))) (3.7)

After the selection of EVS in Group 1 using the values assigned to the EVs, the

remaining charging capacity is dispatched among the EVs in Group 2 with the same

approach. The dispatch is renewed after one minute with the updated parameters.

Those EVs whose SoC reach SoCdes assigned in Group 3 are done with charging.

This decision process of the coordinated charging algorithm is explained in Algo-

rithm 1.
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Algorithm 1: Coordinated charging algorithm
System inputs : Pmax

EV inputs : SoCnow, Ebat

User-defined inputs : SoCdes

Stochastic inputs : tcrit, SoCcrit

1 N ← The set of connected EVs that are not in Gr. 3

2 while |N | ̸= do

3 if total demand ≤ Pmax then

4 Charge all EVs

5 else

6 for EV ∈ N do

7 Estimate SoCnow

8 Calculate SoCcrit using (5)

9 Calculate tcrit using (6)

10 Assign group

11 Calculate value using (7) and (8)

12 end

13 Sort EV s ∈ G1 based on value

14 Select EV s ∈ G1 with highest values

15 Calculate remaining charging capacity, Pr

16 if Pr > 0 then

17 Sort EV s ∈ G2 based on value

18 Select EV s ∈ G2 with highest values

19 end

20 end

21 end

3.3.2 Simulations

The first test scenario concerns the morning peak in charging demands due to the

majority of EV arrivals at the charging station occurring between 07:00 and 08:00,

unveiled by Figure 3.3.
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Figure 3.5: Total charging demand of the coordinated and uncoordinated charging.

In this scenario, all EVs arrive at the charging station within an hour, and the coor-

dinated charging algorithm is used to stretch the morning peak over a more extended

period. Figure 3.5 shows the total demand with the coordinated charging algorithm

and the total demand if uncoordinated charging was implemented. Figure 3.6 presents

the groups and subgroups assigned to each EV by the coordinated charging algorithm

through the day with line graphs. Figure 3.7 demonstrates that the coordinated algo-

rithm ensures all EVs reach their SoCcrit before attempting to charge any one of them

fully through group assignments.

Figure 3.6: Groups assigned to each EV by the coordinated charging algorithm in

Scenario 1.

50



(a) SoCs in coordinated charging of EVs.

(b) SoCs in uncoordinated charging of EVs.

Figure 3.7: Comparison between SoCs in coordinated and uncontrolled charging

methods in Scenario 1.

The second scenario studies the advantage of coordinated charging over FCFS strat-

egy. In the second simulation, the EVs arrive at the charging station in a broader

time frame. However, EV 2 and 6 arrive later than the other vehicles and leave be-

fore enough time for their batteries can be fully charged. Figure 3.8 illustrates the

SoC of the EVs charged with FCFS scheduling algorithm and coordinated charging

algorithm.

In Figure 3.8b, EV 6 leaves the grid with its arrival SoC since the FCFS algorithm

does not start operating on it until shortly before its departure. In Figure 3.8a, the

coordinated charging algorithm dispatches a nonzero CL to EV 6 at the expense of

charging EV 2 shorter. Thus, both EV 2 and 6 are able to achieve their SoCcrit
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(a) SoCs in coordinated charging of EVs.

(b) SoCs in FCFS control of EVs.

Figure 3.8: Comparison between SoCs in coordinated and FCFS charging methods

in Scenario 2.

3.4 Conclusion

This chapter proposes the use of probability density functions based on Kernel Den-

sity Estimation to stochastically represent the arrival and departure time of individual

EV loads to a charging station for real-time charging applications. A coordinated

charging algorithm is presented to demonstrate how the individual load models com-

plement the decision process of smart charging algorithms in the circumstances the

maximum number of EVs charged simultaneously is constrained to shave the peak

EV demand. Finally, the simulations compare the coordinated charging algorithm

with uncoordinated charging and the First Come First Serve scheduling algorithm.
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Smart charging applications have to consider the scalability of their algorithm and

the speed of decision-making in large systems.

The coordinated charging algorithm assumes the availability of the SoC data from

the vehicles. Although there are communication protocols enabling the SoC data ex-

change from the EV to the EVSE, the algorithm can easily be revised by incorporating

smart meters keeping the total energy delivered to each vehicle.
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CHAPTER 4

ELECTRIC VEHICLE CHARGING SCHEDULING

Charging scheduling algorithms select a subset of EVs from the set of EVs connected

to a charging station and allocate their charging times and rates according to prede-

fined optimization goals, system constraints, and charging demand of the EV owners.

For example, charging an EV can be delayed according to VRE availability for cost

minimization, or EVs can be charged with lower currents than the EVSE’s capacity

during peak demand hours not to violate transformer limits.

This chapter studies EV charging problems as a real-time resource allocation prob-

lem, i.e., scheduling problem where each EV charging task is identified by its arrival

time, deadline, and processing time. The chapter is organized as follows:

In Section 4.1, an overview of the online EV charging scheduling problem is given.

First, why the underlying optimization problem in charging scheduling algorithms

is NP-hard and the feasibility of the charging constraints are explained. Then, the

related work on charging scheduling algorithms in the literature is provided.

In Section 4.2, the single system-time horizon coordinated charging control algorithm

in Chapter 3 is extended to a multi-objective scheduling algorithm considering a finite

system-time horizon. First, the system description is given, followed by the explana-

tion of the online charging scheduling algorithm. Finally, offline and online solutions

to the scheduling algorithm are compared. The chapter concludes with a discussion

in the conclusion section.
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4.1 Charging Scheduling Problem

The charging scheduling problem deals with selecting and scheduling a subset of EVs

in the set of N := {1, 2, . . . , N} over the decision-time horizon, T := {1, 2, . . . , T}
given the charging demand of each customer, (ai, di, ei), and the peak constraints of

the charging station, P := {P 1
max, P

2
max, . . . , P

T
max}, and an objective function.

Charging scheduling problem requires the EVs connected to the station to be parked

for an extended period provide the necessary flexibility for smart charging. Since

the charging process is expected to be over in minutes in DC charging, the charging

scheduling problem only applies to AC charging stations. Moreover, the rated power

of EVSEs in the station should be high enough to satisfy the energy requirements of

the EV owners and leave a flexibility margin for charging time allocation.

At a given time, t ∈ T , the charging control algorithm can only know the causal infor-

mation, i.e., the past and current information, or the charging profiles of the EVs that

have already arrived if the user-input data are used [48]. If the complete knowledge

of the future data is known before the beginning of system time, t = 0, the prob-

lem transforms into a deterministic case, which is called an offline scheduling prob-

lem. The algorithm adopted to solve the offline problem is called the offline charging

scheduling algorithm. In practice, the optimal offline solution is not achievable for

real-time charging scenarios due to the incomplete future information. Although of-

fline charging scheduling algorithms make the unrealistic assumption of complete

future information, they are used as a benchmark for evaluating the performance of

online scheduling algorithms.

The underlying optimization problem of online charging scheduling algorithms pos-

sesses three key challenges:

1. Selection of the objective function

2. Computational complexity of scheduling problems

3. Inexistence of feasible solutions due to the constraints in some cases

Online charging scheduling studies focus on devising algorithms to tackle a selected
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subset of these challenges. The objective of EV charging control shows diversity de-

pending on the operator’s standpoint. The objectives could be fulfilling the charg-

ing demands before specified deadlines, maximizing the profit or social welfare,

load shaping/peak shaving, cost minimization utilizing renewables, voltage/frequency

control. In all cases, the critical challenge is the randomness and uncertainty of fu-

ture data, including EV charging demands, electricity and regulation service prices,

renewable generation, and the allowable total charging limit [53]. The knowledge of

future random data is somewhat different in different applications. For instance, the

online charging scheduling algorithm devised in this chapter utilizes (ai, di, ei)stoc for

i ∈ N .

4.1.1 Computational Complexity of Charging Scheduling Algorithms

A computational problem in P is said to be solvable in polynomial-time if the number

of steps required to solve the problem isO(nk), where n is the input length and k. An

NP-hard (Nondeterministic Polynomial-time - hard) problem requires at least many

steps to solve the most complex problem in NP, which is a complexity class that clas-

sifies decision problems whose solution can be verified in polynomial time. Although

it has not been proven, NP-hard problems are believed to have no polynomial-time

algorithms.

Smart charging objectives can be achieved by charging control techniques over a

single-decision time horizon or over a finite length decision-time horizon, T :=

{1, 2, . . . , T}.

In a single-deadline charging scheduling problem, the optimization algorithm decides

whether an EV is charged or not at each decision time, t, until the next one, t + 1,

which is equivalent to the optimization problem of selecting a subset of EVs to be

charged at time step t. this problem reduces to the 0/1 knapsack problem in (4.1),

which is known to be a classic NP-hard problem. Given a set of n items, each with

weight wi and value vi, along with the maximum weight capacity W , the 0/1 knapsack

problem maximizes the sum of the values of the items in the knapsack so that the sum

of the weights is less than or equal to the knapsack’s capacity.

57



max
n∑

i=1

vixi

s.t.
n∑

i=1

wixi ≤ W

xi ∈ {0, 1}.

(4.1)

By a reduction to the 0/1 knapsack problem (Equating the knapsack’s maximum

weight capacity to the available charging capacity, Pmax at time t), it is argued in [54]

that single-deadline charge scheduling is weakly NP-hard. In Chapter 3, we have

tackled this computation problem efficiently by sorting the values assign to EVs using

the stochastic load models.

When we try to solve the optimization problem of allocating discrete charging rates to

EVs at the time step t, the problem reduces to the bounded knapsack problem (BKP),

which is also NP-hard [54]. BKP, in (4.2), removes the restriction that there is only

one of each item, but restricts the number xi of copies of each kind of item to a

maximum non-negative integer value c.

max
n∑

i=1

vixi

s.t.
n∑

i=1

wixi ≤ W

xi ∈ {0, 1, 2, . . . , c}.

(4.2)

Evidently, charging scheduling algorithms are better at fully utilizing the flexibility of

EV loads in satisfying the energy demand because they optimize charging decisions

over multiple time steps over a finite decision time horizon, T := {1, 2, . . . , T}. On

the other hand, the optimization problem of selecting a subset of EVs to be charged at

each time step t ∈ {1, 2, . . . , n} reduces to a time-expanded version of 0/1 knapsack

problem where there exist T.n items to choose from, which is also NP-hard [55].
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4.1.2 Nonexistence of Solutions

Consider the peak-constrained charging scheduling problem given in (4.3) as a Mixed

Integer Linear Problem (MILP), where the arrival/departure times and energy demand

of the customers are represented with the tuple (ai, di, ei). Given enough latent flex-

ibility, the optimum solution (or one of the optimum solutions) allocates charging

times and rates such that each customer is received their requested demand, ei. When

this case is not possible, the optimum solution maximizes welfare by trying to achieve

at least a critical value, ei,cr, for each EV with the constraint in (4.3d).

max U(x) :=
∑
t∈T
i∈N

xt
i (4.3a)

s.t. xt
i = 0, t < ai, t ≥ di, i ∈ N (4.3b)

r
∑
i∈N

xt
i ≤ P t

max, t ∈ T (4.3c)

ei,cr ≤ r
∑
t∈T

xt
i ≤ ei, i ∈ N (4.3d)

xt
i ∈ {0, 1}, t ∈ T , i ∈ N (4.3e)

The lower bound in (4.3d) causes an infeasible constraint set when:

1. The duration between ai and di is not adequate to achieve ei,cr even with non-

stop charging for a certain EV in N ,

2. The set of P := {P 1
max, P

2
max, . . . , P

T
max} prolongs the time necessary for

charging multiple EVs together restraining at least one EV to achieve ei,cr be-

fore its di. In this chapter, we devise a quadratic optimization function utilizing

the stochastic demand to discard the lower bound in (4.3d).

4.1.3 Literature Review of Charging Scheduling Algorithms

The objective of EV charging control shows diversity depending on the operator’s

standpoint. Hence, many studies are addressing the first challenge [56]. In [57], two
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efficient scheduling algorithms for centralized and distributed charging are proposed

to balance congestion between different charging stations and maximize the welfare.

Reference [55] tackles the computational hardness of the scheduling problem with a

low-complexity primal-dual scheduling algorithm in the offline scheduling case and

devises a competitive algorithm design for the online case. Competitive algorithm

designs find optimal charging solutions without exact or stochastic information about

the future EV arrival [48]. A method for scheduling charging and discharging of

electric vehicles, which is based upon the identification of joint time intervals and the

optimal number of charge and discharge time intervals, is presented in [58]. These

works rely on only causal information on the EV demand, optimizing the load demand

revealed at the current time but possibly underestimating the load demand revealed in

the future.

4.2 Charging Scheduling Method for Workplace Charging Stations

Uncertainty and randomness of future knowledge are challenges for online charging

scheduling, which can be reduced by utilizing stochastic EV load models. In this

section 4.2, the single system-time horizon coordinated charging control algorithm

in 3 is extended to a multi-objective scheduling algorithm considering a finite system-

time horizon. The scheduling algorithm makes assumptions about the future arrivals

to the charging station, unlike the classical online EV charging scheduling algorithms,

which optimize the load demand revealed at the current time but underestimate the

load demand revealed in the future. Therefore, EV load models are utilized in a model

predictive control based approach to decrease the complexity of the stochastic online

charging problem into a deterministic case.

4.2.1 System Description

We consider a private workplace parking lot with a single charging station. The

users of the parking lot are required to be registered to the system to benefit from

the charging infrastructure, enabling the CPO to know the set of EVs visiting the

charge point (CP). N := {1, 2, . . . , N} is the set of EVs over the decision-time hori-
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zon T. We use a discrete time model, with time indexed by t ∈ T := {1, 2, . . . , T}
and the length of each time period is δ. Each EV i ∈ N described with two tu-

ples (ai, di, ei)stoc, (ai, di, ei), stochastic and actual values.

The charging scheme assumes adequate number of plugs for all EVs present in the

parking space of the corporate complex. A subset of plugs are energized at a given

time, t ∈ T , when the system’s capacity is tight for satisfying the charging demand,

or the maximum number of EVs charged simultaneously is retrenched on purpose to

shave the peak EV demand by limiting it with P := {P 1
max, P

2
max, . . . , P

T
max}. We

assume that EVs are charged by the Electric Vehicle Supply Equipment (EVSE) they

are connected to with allocated rates at all times. For simplicity, a single charging

rate, r, is used for all EVs.

In general, charging stations are controlled in a hierarchical manner in which the

system parameters and constraints such as the VRE availability and current limits in

a given time are specified for the scheduling algorithm by a controlling unit/agent

with higher status in the hierarchical order. Although the EV loads and other DERs

in the system can be controlled in a centralized manner as in smart homes, this is

hardly suitable for controlling commercial charging stations, considering the number

of vehicles to be charged. In centralized control, system agents (each EV connected

to the station, PV units, dispatchable and critical loads, diesel generator, etc.) are

controlled by a centralized controller, which implies that all parameters related to

these agents must be considered by a single optimization algorithm.

The station’s maximum allowable total charging demand,P := {P 1
max, P

2
max, . . . , P

T
max}

is assumed to be given. Moreover, the per unit revenue for charging and electricity

cost are assumed to be constant.

4.2.2 Online Charging Scheduling Algorithm

In this section, we formulate the peak-constrained charging scheduling as a mixed in-

teger problem (MIP) and devise an event-triggered multi-objective online scheduling

algorithm. The proposed solution utilizes EV load models in a model predictive con-

trol based approach to reduce the complexity of stochastic online charging problem
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into a deterministic case.

min U(t, x, y) (4.4a)

s.t. xt
i = 0, t < ai, t ≥ di, i ∈ N (4.4b)

r
∑
i∈N

xt
i ≤ P t

max, t ∈ T (4.4c)

r
∑
t∈T

xt
i = yi, i ∈ N (4.4d)

yi ≤ ei, i ∈ N (4.4e)

xt
i ∈ {0, 1}, t ∈ T , i ∈ N (4.4f)

The scheduling problem in (4.4) is quite similar to the MILP formulation in (4.3).

Here, the lower bound in (4.3d) is discarded and yi is the total amount of energy

delivered to EV i ∈ N in (4.4e), bounded by the total amount of energy requested by

the EV in (4.4e).

The utility function, U , in (4.4a) formulated by (4.5). U1 in (4.5b) improves the

fairness of allocated charging times. There can be more than one optimal solution

to charge all EVs at their requested demand, given enough latent time flexibility for

the scheduling jobs. Therefore, U2, in (4.5c) is added to the objective function so

that EVs are charged as quickly as possible. This objective function is utilized in

other scheduling problems than EV scheduling, such as computing job scheduling and

industrial process optimization to find the solution with the minimum total operation

time. The α constants in (4.5a) tune the function.

U := α1U1 + α2U2 (4.5a)

U1 :=
∑
i∈N

(fv,i − yi)
2 (4.5b)

U2 :=
∑
t∈T
i∈N

(t− T )xt
i (4.5c)

(4.5d)

The value functions in Chapter 3 are the inspiration for the formation of the quadratic
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objective function in (4.5b). In order to provide a fair distribution of charging time

over the decision horizon T ; the scheduling problem should prioritize delivering ei,cr

for each EV while considering the time it takes to reach ei. The derivative of fv

in (4.6a) decreases as the total amount of energy delivered to an EV increases making

each additional charging decision less valuable than the previous one for the same

EV. However, it should be noted that group constants in (4.6b) should be selected as

v1g > v2g to prioritize delivering ei,cr and larger than 1 to prevent negative in the square

function.

fv,i =

ei/r∑
j=1

(vjg + tanh(
ei − jr

ei
)) (4.6a)

vjg =

v1g , jr ≤ ei,cr

v2g , jr > ei,cr

(4.6b)

The online charging scheduling algorithm makes assumptions on the future arrival

and departure times with astoci and dstoci . For a given time, t ∈ T , the online schedul-

ing algorithm assumes astoci and dstoci as connection and departure times for the EVs

that are not yet to be at the charging station whose energy demand is estoci . So, unre-

alistic time slots are prevented in the future for the EVs that are actually connected

to the station. Similarly, the algorithm assumes that the present EVs in the charging

station will depart at dstoci . If the departure time, di, defined by the EV owner is earlier

than dstoci , dstoci is reassigned as in (4.7).

dstoci ← di , di ≤ dstoci (4.7)

ei,cr is given by the stochastic EV load models, thus ei,cr = estoci . The last two

assumptions enable the algorithm to associate EVs with values using (4.6) so that

ei,cr could be delivered until di.

The algorithm is triggered by the occurrences of the following events in E and the op-

timization problem formulated by the MIP in (4.4) is solved for the optimal charging

schedule:

• Arrival of a new EV,
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• Departure of an EV,

• No arrival of an absent EV until astoci ,

• No departure of a present EV after di.

In the cases of the last two items in the event list, the online charging scheduling

algorithm makes the new assumptions about the future arrival and departure times

and reassigns astoci and dstoci according to (4.8).

astoci ← t+ 1 , astoci ≤ t < ai (4.8a)

dstoci ← t+ 1 , di ≤ t (4.8b)

The pseudo code of the online charging scheduling algorithm is given in Algorithm 2.

Profit Maximization and Cost Minimization: One of the most common objec-

tives of charging scheduling optimization is to maximize the CPO’s profit or min-

imize the system cost, which is achieved by following the VRE availability (if the

system possesses on-site generation such as a PV system) and time-varying cost

of electricity. To account for the system loads and renewable generation P t
load and

P t
gen must be predicted for the future t ∈ T using prediction methods. Thus, two

related vectors, P t
load ∈ Pload := {P 1

load, P
2
load, . . . , P

T
load} and P t

gen ∈ Pgen :=

{P 1
gen, P

2
gen, . . . , P

T
gen}, are provided to the optimization algorithm as parameters. In

addition, time-varying per unit electricity price, C := {c1, c2, . . . , cT}, the per unit

revenue of the CPO for charging, Π := {π1, π2, . . . , πT}, must be known. Then, the

utility function, U3 in (4.9) can be included into the multi-objective utility function

in (4.5a) to obtain U := α1U1 + α2U2 + α3U3, where α3 is negative.

U3 :=
∑
t∈T

πtP t
cs −

∑
t∈T

ctP t
net (4.9)

In (4.9), total charging power of the station, P t
cs, and the net power consumption of

the system, P t
net, are calculated using (4.10) and (4.11), respectively.
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Algorithm 2: Online charging scheduling algorithm
System inputs : P := {P 1

max, P
2
max, . . . , P

T
max}

User-defined inputs: (ai, di, ei) for i ∈ N
Stochastic inputs : (ai, di, ei)stoc for i ∈ N
Initialization:

for i ∈ N do
(ai, di, ei)← (ai, di, ei)

stoc

Calculate fv,i using (4.6a)

N̂ = { }

xt
i = 0, t ∈ T

end

1 if An event in E occurs then

2 for i ∈ N do

3 if astoci ≤ t < ai then

4 astoci ← t+ 1

5 end

6 end

7 N̂ ← The set of arrived EVs

8 for i ∈ N̂ do

9 (ai, di, ei)← (ai, di, ei − r
∑

txt
i)

10 if di ≤ dstoci then

11 dstoci ← di

12 end

13 Calculate fv,i using (4.6a)

14 if di ≤ t then

15 dstoci ← t+ 1

16 end

17 end

18 Solve (4.4) with (astoci , dstoci , ei), i ∈ N
19 for i ∈ N̂ do

20 Set the plot signal of EV to r.xt
i for t ∈ {t, t+ 1, . . . , T}

21 end

22 end
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P t
net = P t

cs + P t
load − P t

gen , t ∈ T (4.10)

P t
cs = r

∑
i∈N

xt
i , t ∈ T (4.11)

When πt ∈ Π is nonzero, the utility function, U3, maximizes the profit; otherwise,

when πt is zero, it minimizes the electricity cost of the system. Since both the per

unit revenue for charging and electricity cost are assumed to be constant, U3 has no

effect on the optimum schedule, which is why it is omitted in (4.4a).

4.2.3 Simulations

This subsection presents a comparison between the offline charging solution based on

the stochastic EV models, (ai, di, ei)stoc, and the online charging scheduling solution.

In the offline solution (ai, di, ei)
stoc = (ai, di, ei) since it is based on the predicted

parameters. Table 4.1 presents the tuples describing the EVs inN := {1, 2, . . . , 7} in

this charging scenario. The system allows the simultaneous charging of at most three

vehicles, and the charging rate, r, of each EVSE is 1.84 kW.The length of each time

period, δ, is 15 minutes. ei is selected observably greater than the stochastic demands

to demonstrate the differences between the offline and online solutions. Also, the

actual arrival time of EV 6 is selected significantly later than its predicted value to

include an extreme event in the simulation.

Table 4.1: Actual and stochastic EV model parameters used in the scheduling algo-
rithm

EV ai di ei (kWh) astoci dstoci estoci (kWh)
1 07:30 16:45 8.74 09:30 16:00 6.9
2 09:15 18:00 11.04 10:15 17:00 8.28
3 07:45 16:45 5.52 09:15 16:30 4.14
4 07:45 18:15 7.36 09:15 17:00 5.52
5 06:45 17:15 5.52 08:15 16:45 4.14
6 14:15 17:00 4.6 09:45 16:30 2.76
7 07:30 16:30 11.96 09:45 16:15 9.66
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Figure 4.1: Offline charging scheduling solution based on stochastic EV models

The offline charging solution based on the stochastic EV models, (ai, di, ei)stoc, is

given in Fig. 4.1 while the online charging scheduling solution is presented in Fig. 4.2.

Figure 4.2: Online charging scheduling solution with stochastic EV models

Similar to the the coordinated charging algorithm in Chapter 3, the charging schedul-

ing algorithm stretches the morning peak over a more extended period. Fig. 4.3 com-

pares the total charging demands of offline and online charging scheduling solutions

and the total demand if no charging control is implemented.
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Figure 4.3: Total charging demands of uncontrolled charging, offline and online

charging solutions.

4.3 Conclusion

Motivated by the rapid proliferation of customized experiences based on past user

data in the service industry, this chapter studied charging scheduling using individual

EV load models for a company’s parking lot. This work assumes there are an adequate

number of plugs for all EVs in N := {1, 2, . . . , N} over the decision-time horizon

T. Moreover, it assumes that the individual load model for each customer that visits

the charging station is available since the online charging scheduling algorithm is

designed for workplace charging at a private parking lot.

In large scale AC smart charging stations, the charging profiles of each customer,

(ai, di, ei), is usually set by the EV owner through a mobile application [20]. Classic

online charging scheduling algorithms rely on causal information since the connec-

tion duration and energy demand defined by the future customers are unavailable until

their arrival at the station. Thus, these scheduling algorithms optimize the load de-

mand revealed at the current time but underestimate the load demand revealed in the

future [48].

In this chapter, stochastic EV load models are utilized to complement the optimization
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function of the scheduling process by extending the degree of knowledge of future

random data. The charging scheduling algorithm in Section 4.2, formulated as MIP

with a quadratic optimization function of the values calculated from the EV load

models, makes assumptions on load demand revealed in the future based on the EV

models. Moreover, this algorithm acknowledges the variance in the flexibility of

each driver’s departure times and utilizes this information to improve the fairness of

charging time allocation to ensure each EV is charged at least a critical amount.
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CHAPTER 5

CONCLUSION AND FUTURE WORK

Since the declaration of the Green Deal in 2019, reducing greenhouse gas emissions

to achieve carbon neutrality and limit the rise in global temperature has become a race

against global warming in Europe. As of the end of 2021, Turkey also set out to fulfill

its obligations regarding the global climate crisis, in line with the EU’s climate neu-

trality target, which includes the electrification of end-use sectors, including the trans-

portation sector. This transformation requires demand-side flexibility through sector

coupling flexibility resources to the end-use sectors. This thesis concerns one of

these solutions, the coupling of smart AC charging algorithms to commercial charg-

ing stations for safer EV adoption. In particular, this thesis studied the utilization of

individual EV load models based on KDE and the employment of these models in

real-time AC charging control for a private parking lot.

5.1 Summary of the Contributions

The main contributions are the following:

• An extensive overview of the cyber-physical EV charging ecosystem is pro-

vided in Chapter 2 to alleviate confusion on the standards and protocols applied

to EV charging infrastructure.

• The necessity of modeling the EV drivers separately is shown by investigating

the CDFs of the random variables describing individual EV loads in Chapter 3.

• Through the simulations in Chapter 3, it is shown that acknowledging the vari-
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ance in the flexibility of each driver’s demand improves the fairness of charging

time allocation to ensure each EV is charged at least a critical amount.

• Two coordinated charging algorithms utilizing the individual EV load models

are proposed:

– The coordinated charging algorithm in Chapter 3 tackles the NP-hardness

of single-deadline scheduling efficiently by sorting the values assigned to

PEVs using the stochastic load models,

– The scheduling algorithm in Chapter 4 utilizes a quadratic optimization

function of the values calculated from the EV load models. Thus, EV

load models in a model predictive control based approach here to decrease

the complexity of stochastic online charging problem into a deterministic

case.

– The scheduling algorithm in Chapter 4 makes assumptions about the fu-

ture arrivals to the charging station, unlike the classical online EV charg-

ing scheduling algorithms, which optimize the load demand revealed at

the current time but underestimate the load demand revealed in the future.

5.2 Practical Limitations and Future Work

In this work, the random variables describing the arrival and departure times of the

EVs are estimated using KDE. The mean of the energy requested from the charging

network for a simple stochastic representation of the charging demand. The KDE

method can be used to estimate the charging amount provided to the EV by a specific

charging station, assuming the charging amount of each session is recorded. There are

multiple aspects to consider for estimating the charging amount, such as daily routes,

traffic congestion, and other charging points visited by the driver. This work assumes

that drivers follow the same course in their everyday commutes under similar traffic

congestion levels.

The findings put forward the advantages individual load models provide in smart

charging algorithms. However, there is a trade-off between the details an algorithm

can contemplate and storage and computational costs. The simulations include only
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seven different drivers. Investigating the scalability of the strategies used in this work

as the number of drivers increases should be the follow-up work on this thesis work.
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